If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29k^2+35k=0
a = 29; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·29·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*29}=\frac{-70}{58} =-1+6/29 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*29}=\frac{0}{58} =0 $
| -8=a/6 | | 5/6x+7=47 | | (3x-6)^2(x-6)-(3x-6)(x-6)^2=0 | | 10v-30=10 | | y=9.53+688 | | 8(2x-7)=8(x-6) | | 3j^2+8j-3=0 | | 4x+17/18-13x-2/32+x/3=7x/12-x+16/36 | | 12m+(4m-10)=710 | | y=5^0.8*88 | | 4-7x=39-4 | | 3w-6+5=6w-10 | | y=50.8*88 | | h^2-31h=0 | | 2x-5=3/2 | | s^2-30s=0 | | 9x^2-155x+500=0 | | 7+8/77x=9 | | 4y-15=y+3 | | 3x+12=—12 | | (f,4)/(-2,-1)=-5 | | d^2-24d+23=0 | | 11=x+29 | | 66=-6x | | 2x-4=x-9 | | q,-6/0,6=-6 | | 8x+3-6x=21 | | -5x2+15x-10=0 | | 34-1/2p=1/4p-1 | | 8x-80=40 | | 2x-4+12x-3=0 | | 3y-5=72 |